* Ta có \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\)

* Từ dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\) ta suy ra:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\)

Với điều kiện các tỉ số đều có nghĩa.

Bạn đang xem: Tính chất của dãy tỉ số bằng nhau nâng cao

Ví dụ: \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 + 5}}{{6 + 3}} = \dfrac{{15}}{9}\)

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 - 5}}{{6 -3}}\)

* Mở rộng

$\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$

Ví dụ:

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{2.10 + 3.5}}{{2.6 + 3.3}} = \dfrac{{35}}{{21}}\)


Chú ý:

Khi nói các số \(x,\,y,\,z\) tỉ lệ với các số \(a,\,b,\,c\) tức là ta có \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}\). Ta cũng viết \(x:y:z = a:b:c\)

II. Các dạng toán thường gặp

Dạng 1: Tìm hai số $x;y$ biết tổng (hoặc hiệu) và tỉ số của chúng.

Phương pháp giải:

* Để tìm hai số \(x;y\) khi biết tổng $x + y = s$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x + y}}{{a + b}} = \dfrac{s}{{a + b}}\)

Từ đó \(x = \dfrac{s}{{a + b}}.a;\,y = \dfrac{s}{{a + b}}.b\) .

* Để tìm hai số \(x;y\) khi biết hiệu $x - y = p$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x - y}}{{a - b}} = \dfrac{p}{{a - b}}\)


Từ đó \(x = \dfrac{p}{{a - b}}.a;\)\(y = \dfrac{p}{{a - b}}.b\) .

Ví dụ: Tìm hai số \(x;y\) biết \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = - 32\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} = - 4\)

Do đó \(\frac{x}{3} = - 4 \Rightarrow x = (-4).3 = - 12\) và \(\frac{y}{5} = - 4 \Rightarrow y = (-4).5 = - 20.\)

Vậy \(x = - 12;y = - 20.\)

Dạng 2: Chia một số thành các phần tỉ lệ với các số cho trước

Phương pháp:

Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)

Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).

Dạng 3: Tìm hai số biết tổng và tỉ số của chúng


Phương pháp:

Tìm hai số \(x;\,y\) biết $x.y = P$ và \(\dfrac{x}{y} = \dfrac{a}{b}\)

Cách 1: Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Đặt \(\dfrac{x}{a} = \dfrac{y}{b} = k\) ta có \(x = ka;\,y = kb\)

Nên \(x.y = ka.kb = {k^2}ab = P \)\(\Rightarrow {k^2} = \dfrac{P}{{ab}}\)

Từ đó tìm được \(k\) sau đó tìm được \(x,y\).

Cách 2: Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{{{x^2}}}{{xy}} = \dfrac{a}{b}\) hay \(\dfrac{{{x^2}}}{P} = \dfrac{a}{b} \)\(\Rightarrow {x^2} = \dfrac{{Pa}}{b}\) từ đó tìm được \(x\) và \(y.\)

Dạng 4: Chứng minh đẳng thức từ một tỉ lệ thức cho trước.

Phương pháp:

Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau.

Dạng 5: Bài toán về tỉ lệ thức

Phương pháp:

+ Xác định mối quan hệ giữa các yếu tố của đề bài

+ Lập được tỉ lệ thức

+ Áp dụng tính chất dãy tỉ số bằng nhau để giải bài toán.

Xem thêm: Báo Cáo Thành Tích Tập Thể Công Đoàn Đề Nghị Khen Thưởng, Mẫu Báo Cáo Thành Tích Công Đoàn Dành Cho Tập Thể

 


*
Bình luận
*
Chia sẻ
Chia sẻ
Bình chọn:
4.5 trên 171 phiếu
>> (Hot) Đã có SGK lớp 7 kết nối tri thức, chân trời sáng tạo, cánh diều năm học mới 2022-2023. Xem ngay!
Bài tiếp theo
*


Luyện Bài Tập Trắc nghiệm Toán 7 - Xem ngay


Báo lỗi - Góp ý
*
*
*
*
*
*
*
*


TẢI APP ĐỂ XEM OFFLINE


*
*

Bài giải đang được quan tâm


× Báo lỗi góp ý
Vấn đề em gặp phải là gì ?

Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp glaskragujevca.net


Gửi góp ý Hủy bỏ
× Báo lỗi

Cảm ơn bạn đã sử dụng glaskragujevca.net. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Họ và tên:


Gửi Hủy bỏ

Liên hệ | Chính sách

*

*

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép glaskragujevca.net gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.