Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiên, hành động kia có n cách thực hiên không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.
Chú ý: số phần tử của tập hợp hữu hạn X được kí hiệu là |X| hoặc n(X)
Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau: Nếu A và B là các tập hợp hữu hạn không giao nhau thì

Mở rộng: Một công việc được hoàn thành bởi một trong k hành động
.Nếu hành động A1 có m1cách thực hiện, hành động A2 có m2 cách thực hiện,…, hành động Ak có mk cách thực hiện và các cách thực hiên của các hành động trên không trùng nhau thì công việc đó có

2. Quy tắc nhân
Một công việc được hoàn thành bởi hai hành động liên tiếp.Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì công việc đó có m.n cách thực hiện.
Mở rộng: Một công việc được hoàn thành bởi k hành động liên tiếp. Nếu hành động A1 có m1cách thực hiện, ứng với mỗi cách thực hiện hành động A1 có m2 cách thực hiện hành động A2,…, có mk cách thực hiện hành động Ak thì công việc đó có

HOÁN VỊ- CHỈNH HỢP- TỔ HỢP
1. Hoán vị
Cho tập hợp A có n phần tử . Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. Số các hoán vị của tập hợp có n phần tử được kí hiệu là Pn
Định lí 1:

chứng minh
Việc sắp xếp thứ tự n phần tử của tập hợp A là một công việc gồm n công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất: n cách
Công đoạn 2: chọn phần tử xếp vào vị trí thứ hai: (n-1) cách
Công đoạn thứ i: chọn phần tử xếp vào vị trí thứ i có

.
Công đoạn thứ n: chọn phần tử xếp vào vị trí thứ n có 1 cách.
Theo quy tắc nhân thì có


STUDY TIP Hai hoán vị của n phần tử chỉ khác nhau ở thứ tự sắp xếp. Chẳng hạn, hai hoán vị abc và acb của ba phần tử a, b, c là khác nhau. |
2.
Bạn đang xem: Quy tắc vách ngăn
Chỉnh hợp
Cho tập A gồm n phần tử .
Kết quả của việc lấy k phần tử khác nhau tử n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chinht hợp chập k của n phần tử đã cho.
STUDY TIP: Từ định nghĩa ta thấy một hoán vị của tập hợp A có n phần tử là một chỉnh hợp chập n của A.
![]() |
Định lý 2:



Chứng minh
Việc thiết lập một chỉnh hợp chập k của tập A có n phần tử là một công việc gồm k công đoạn.
Công đoạn 1: Chọn phần tử xếp vào vị trí thứ nhất có n cách thực hiện.
Công đoạn 2: Chọn phần tử xếp vào vị trí thứ hai có

.
Sau khi thực hiện xong công đoạn (chọn phần tử của A vào các vị trí thứ 1, 2,., ), công đoạn thứ i tiếp theo là chọn phần tử xếp vào vị trí thứ i có

Công đoạn cuối, công đoạn k có

Thoe quy tắc nhân thì có

3. Tổ hợp
Giả sử tập A có n phần tử . Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.
Số các tổ hợp chập k của tập hợp có n phần tử có kí hiệu là .
STUDY TIP Số k trong định nghĩa cần thỏa mãn điều kiện . Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng. |
QUY ƯỚC


Định lý 3

Chứng minh
Ta có mỗi hoán vị của một tổ hợp chập k của A cho ta một chỉnh hợp chập k của A. Vậy

Định lý 4 (hai tính chất cơ bản của số )
a. Cho số nguyên dương n và số nguyên k với


b. Hằng đẳng thức Pascal
Cho số nguyên dương n và số nguyên dương k với . Khi đó

Đọc thêm
Trên máy tính cầm tay có chức năng tính tổ hợp, chỉnh hợp như sau:
Với tổ hợp ta nhấn tổ hợp phím

Ví dụ ta muốn tính



Với chỉnh hợp ta ấn tổ hợp phím

Ví dụ ta muốn tính



B. CÁC DẠNG TOÁN VỀ PHÉP ĐẾM
Phương pháp chung:
Để đếm số cách lựa chọn để thực hiện một công việc bằng quy tắc cộng, ta thực hiện các bước:
Bước 1: Phân tích xem có bao nhiêu phương án riêng biệt để thực hiện công việc (có nghĩa công việc có thể hoàn thành bằng một trong các phương án

Bước 2: Đếm số cách chọn trong các phương án
Bước 3: Dùng quy tắc cộng ta tính được số cách lựa chọn để thực hiện công việc là

Để đếm số cách lựa chọn để thực hiện công việc bằng quy tắc nhân, ta thực hiện các bước:
Bước 1: Phân tích xem có bao nhiêu công đoạn liên tiếp cần phải tiến hành để thực hiện công việc (giả sử chỉ hoàn thành sau khi tất cả các công đoạn

Bước 2: Đếm số cách chọn trong các công đoạn
Bước 3: Dùng quy tắc nhân ta tính được số cách lựa chọn để thực hiện công việc là

Ví dụ 1. Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra:
a) một học sinh đi dự trại hè của trường.
b) một học sinh nam và một học sinh nữ dự trại hè của trường. Số cách Chonju trong mỗi trường hợp a và b lần lượt là
A. 45 và 500. B. 500 và 45. C. 25 và 500. D. 500 và 25.
Lời giải
Chọn A
a) Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:
Bước 2: Đếm số cách chọn.
Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.
Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc cộng.
Vậy có

b) Bước 1: Với bài toán b thì ta thấy công việc là chọn học sinh nam và một học sinh nữ. Do vậy ta có 2 công đoạn.
Bước 2: Đếm số cách chọn trong các công đoạn.
Công đoạn 1: Chọn 1 học sinh nam trong số 25 học sinh nam thì có 25 cách chọn.
Công đoạn 2: Chọn 1 học sinh nữ trong số 20 học sinh nữ thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc nhân.
Vậy ta có

STUDY TIP Bài toán ở ví dụ 1 giúp ta cũng cố và định hình các bước giải quyết bài toán đếm sử dụng quy tắc cộng; quy tắc nhân. |
Chú ý:
Quy tắc cộng: Áp dụng khi công việc có nhiều phương án giải quyết.
Quy tắc nhân: Áp dụng khi công việc có nhiều công đoạn.
Ví dụ 2. Trên giá sách có 10 quyển sách Văn khác nhau, 8 quyển sách Toán khác nhau và 6 quyển sách Tiếng Anh khác nhau. Hỏi có bao nhiêu cách chọn hai quyển sách khác môn nhau?
A. 80. B. 60. C. 48. D. 188.
Lời giải
Chọn D
Theo quy tắc nhân ta có:



Theo quy tắc cộng ta có số cách chọn 2 quyển sách khác môn là

STUDY TIP
Ta thấy bài toán ở ví dụ 2 là sự kết hợp của cả quy tắc cộng và quy tắc nhân khi bài toán vừa cần chia trường hợp vừa cần lựa chọn theo bước.
Ví dụ 3. Biển đăng kí xe ô tô có 6 chữ số và hai chữ cái trong số 26 chữ cái (không dùng các chữ


A.



Lời giải
Chọn A
Theo quy tắc nhân ta thực hiện từng bước.
Chữ cái đầu tiên có 24 cách chọn.
Chữ cái tiếp theo cũng có 24 cách chọn.
Chữ số đầu tiên có 9 cách chọn.
Chữ số thứ hai có 10 cách chọn.
Chữ số thứ ba có 10 cách chọn.
Chữ số thứ tư có 10 cách chọn.
Chữ số thứ năm có 10 cách chọn.
Chữ số thứ sau có 10 cách chọn.
Vậy theo quy tắc nhân ta có

STUDY TIP Có thể phân biệt bài toán sử dụng quy tắc cộng hay quy tắc nhân là phân biệt xem công việc cần làm có thể chia trường hợp hay phải làm theo từng bước. |
Ví dụ 4. Có bao nhiêu cách xếp 7 học sinh

A. cách. B. cách. C.

Lời giải
Chọn C
Ta thấy ở đây bài toán xuất hiện hai đối tượng.
Đối tượng 1: Hai bạn và (hai đối tượng này có tính chất riêng).
Đối tượng 2: Các bạn còn lại có thể thay đổi vị trí cho nhau.
Bước 1: Ta sử dụng tính chất riêng của hai bạn và trước. Hai bạn này chỉ ngồi đầu và ngồi cuối, hoán đổi cho nhau nên có cách xếp.
Bước 2: Xếp vị trí cho các bạn còn lại, ta có

Vậy ta có

STUDY TIP Để nhận dạng một bài toán đếm có sử dụng hoán vị của phần tử, ta dựa trên dấu hiệu a. Tất cả phần tử đều có mặt. b. Mỗi phần tử chỉ xuất hiện 1 lần. c. Có sự phân biệt thứ tự giữa các phần tử. d. Số cách xếp phần tử là số hoán vị của phần tử đó ![]() |
Ví dụ 5. Một nhóm 9 người gồm ba đàn ông, bốn phụ nữ và hai đứa trẻ đi xem phim. Hỏi có bao nhiêu cách xếp họ ngồi trên một hàng ghế sao cho mỗi đứa trẻ ngồi giữa hai phụ nữ và không có hai người đàn ông nào ngồi cạnh nhau?
A.




Lời giải
Chọn B
Kí hiệu


PA1:

PA2:

PA3:

Xét phương án 1: Ba vị trí ghế cho đàn ông có cách.
Bốn vị trí ghế cho phụ nữ có thể có cách.
Hai vị trí ghế trẻ con ngồi có thể có cách.
Theo quy tắc nhân thì ta có

Lập luận tương tự cho phương án 2 và phương án 3.
Theo quy tắc cộng thì ta có

STUDY TIP Với các bài toán gồm có ít phần tử và vừa cần chia trường hợp vừa thực hiện theo bước thì ta cần chia rõ trường hợp trước, lần lượt thực hiện từng trường hợp (sử dụng quy tắc nhân từng bước) sau đó mới áp dụng quy tắc cộng để cộng số cách trong các trường hợp với nhau. |
Ví dụ 6. Một chồng sách gồm 4 quyển sách Toán, 3 quyển sách Vật lý, 5 quyển sách Hóa học. Hỏi có bao nhiêu cách xếp các quyển sách trên thành một hàng ngang sao cho 4 quyển sách Toán đứng cạnh nhau, 3 quyển Vật lý đứng cạnh nhau?
A. cách. B. cách. C.


Lời giải
Chọn C.
Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là cách.
Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là cách.
Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:
+ 1 “buộc” Toán.
+ 1 “buộc” Lý.
+ 5 quyển Hóa.
Thì sẽ có

Vậy theo quy tắc nhân ta có

STUDY TIP Với các dạng bài tập yêu cầu xếp hai hoặc nhiều phần tử đứng cạnh nhau thì ta sẽ “buộc” các phần tử này một nhóm và coi như 1 phần tử. |
Ví dụ 7. Một câu lạc bộ phụ nữ của phường Khương Mai có 39 hội viên. Phường Khương Mai có tổ chức một hội thảo cần chọn ra 9 người xếp vào 9 vị trí lễ tân khác nhau ở cổng chào, 12 người vào 12 vị trí khác nhau ở ghế khách mới. Hỏi có bao nhiêu cách chọn các hội viên để đi tham gia các vị trí trong hội thao theo quy định?
A.




Phân tích
Bài toán sử dụng quy tắc nhân khi ta phải thực hiện hai bước:
Bước 1: Chọn 9 người vào vị trí lễ tân.
Bước 2: Chọn 12 người vào vị trí khách mời.
Dấu hiệu nhận biết sử dụng chỉnh hợp ở phần STUDY TIP.
Lời giải
Chọn D.
Bước 1: Chọn người vào vị trí lễ tân.
Do ở đây được sắp theo thứ tự nên ta sẽ sử dụng chỉnh hợp. Số cách chọn ra 9 người vào vị trí lễ tân là

Bước 2: Chọn người vào vị trí khách mời. Số cách chọn là 12 thành viên trong số các thành viên còn lại để xếp vào khách mời là

Vậy theo quy tắc nhân thì số cách chọn các hội viên để đi dự hội thảo theo đúng quy định là

STUDY TIP Để nhận dạng một bài toán đếm có sử dụng chỉnh hợp chập của phần tử, ta cần có các dấu hiệu: a. Phải chọn phần tử từ phần tử cho trước. b. Có sự phân biệt thứ tự giữa phần tử được chọn. c. Số cách chọn phần tử có phân biệt thứ tự từ phần tử là cách. |
Ví dụ 8. Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
A.



Lời giải
Chọn A.
Cách 1: Trước hết, xếp 6 học sinh thành một hàng có

Lúc này giữa hai học sinh bất kì sẽ tạo nên một vách ngăn và 6 học sinh sẽ tạo nên 7 vị trí có thể xếp các thầy vào đó tính cả hai vị trí ở hai đầu hàng (hình minh họa bên dưới). 7 vị trí dấu nhân chính là 7 vách ngăn được tạo ra.

+ Do đề yêu cầu 2 thầy giáo không đứng cạnh nhau nên ta xếp 2 thầy giáo vào 2 trong 7 vị trí vách ngăn được tạo ra có

Theo quy tắc nhân ta có tất cả

Cách 2:
- Có cách xếp 8 người.
- Buộc hai giáo viên lại với nhau thì có cách buộc.
Khi đó có


STUDY TIP Khi bài toán yêu cầu xếp hai hoặc nhiều phần tử không đứng cạnh nhau. Chúng ta có thể tạo ra các “vách ngăn” các phần tử này trước khi xếp chúng. |
Ví dụ 9. Từ 5 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm 7 bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất 3 bông hồng vàng và 3 bông hồng đỏ?
A.



Phân tích
Ta thấy do chỉ chọn 7 bông hồng mà có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ nên chỉ có 3 trường hợp sau:
TH1: Chọn được 3 bông hồng vàng và 4 bông hồng đỏ.
TH2: Chọn được 4 bông hồng vàng và 3 bông hồng đỏ.
TH3: Chọn được 3 bông hồng vàng, 3 bông hồng đỏ và 1 bông hồng trắng.
Lời giải
Chọn D.
TH1: Số cách chọn 3 bông hồng vàng là

Số cách chọn 4 bông hồng đỏ là

Theo quy tắc nhân thì có

TH2: Tương tự TH1 thì ta có

TH3: Tương tự thì có

Vậy theo quy tắc cộng thì có

STUDY TIP Để nhận dạng bài toán sử dụng tổ hợp chập của phần tử, ta dựa trên dấu hiệu: a. Phải chọn ra phần tử từ phần tử cho trước. b. Không phân biệt thứ tự giữa phần tử được chọn. c. Số cách chọn phần tử không phân biệt thứ tự từ phần tử đã cho là cách. |
Từ các bài toán trên ta rút ra được quy luật phân biệt tổ hợp và chỉnh hợp như sau:
· Chỉnh hợp và tổ hợp liên hệ với nhau bởi công thức:

· Chỉnh hợp: Có thứ tự.
· Tổ hợp: Không có thứ tự.
· Những bài toán mà kết quả phụ thuộc vào vị trí các phần tử thì sử dụng chỉnh hợp. Ngược lại thì sử dụng tổ hợp.
· Cách lấy phần tử từ tập phần tử

+ Không thứ tự:
+ Có thứ tự:
Ví dụ 10. Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp , 4 học sinh lớp và 3 học sinh lớp . Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
A.




Lời giải
Chọn D.
Số cách chọn 4 học sinh bất kì từ 12 học sinh là

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:
TH1: Lớp có hai học sinh, các lớp

Chọn 2 học sinh trong 5 học sinh lớp có

Chọn 1 học sinh trong 4 học sinh lớp có

Chọn 1 học sinh trong 3 học sinh lớp có

Suy ra số cách chọn là

TH2: Lớp có 2 học sinh, các lớp

Tương tự ta có số cách chọn là

TH3: Lớp có 2 học sinh, các lớp

Tương tự ta có số cách chọn là

Vậy số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là

Số cách chọn ra 4 học sinh thuộc không quá 2 trong 3 lớp trên là

STUDY TIP Trong nhiều bài toán, làm trực tiếp sẽ khó trong việc xác định các trường hợp hoặc các bước thì ta nên làm theo hướng gián tiếp như bài toán ở ví dụ 9. Ta sử dụng cách làm gián tiếp khi bài toán giải bằng cách trực tiếp gặp khó khan do xảy ra quá nhiều trường hợp, chúng ta tìm cách gián tiếp bằng cách xét bài toán đối. |
Ví dụ 11. Với các chữ số

A.



Lời giải
Chọn C.
Giả sử các số tự nhiên gồm 8 chữ số tương ứng với 8 ô.

Do chữ số 1 có mặt 3 lần nên ta sẽ coi như tìm số các số thỏa mãn đề bài được tạo nên từ 8 số

Số hoán vị của 8 số

Mặt khác chữ số 1 lặp lại 3 lần nên số cách xếp là


Xét trường hợp ô thứ nhất là chữ số 0, thì số cách xếp là

STUDY TIP Bài toán trên là một dấu hiêu của hoán vị lặp. Để biết thêm về hoán vị lặp thì ta sẽ nghiên cứu ở phần đọc thêm. |








Vậy các số tự nhiên thỏa mãn yêu cầu bài toán là

Ví dụ 12. Cho bạn học sinh

A. cách. B. cách. C.
Xem thêm: Sự Phụ Thuộc Của Điện Trở Suất Vào Nhiệt Độ Có Biểu Thức Điện Trở Suất Lớp 11
cách. D.

Lời giải
Ta thấy ở đây xếp các vị trí theo hình tròn nên ta phải cố định vị trí một bạn.
Ta chọn cố định vị trị của , sau đó xếp vị trí cho

