Phương trình logarit cùng bất phương trình logarit cũng là một trong những nội dung toán lớp 12 gồm trong đề thi THPT non sông hàng năm, do vậy các em phải nắm vững.

Bạn đang xem: Phương trình logarit cơ bản


Để có thể giải được những phương trình với bất phương trình logarit những em cần nắm rõ kiến thức về hàm số logarit vẫn được bọn họ ôn ở bài viết trước, nếu chưa nhớ các đặc thù của hàm logarit những em hoàn toàn có thể xem lại Tại Đây.

I. PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT

1. Phương trình Logarit cơ bản

+ Phương trình logax = b (0b với đa số b

2. Bất phương trình Logarit cơ bản

+ Xét bất phương trình logax > b:

- nếu như a>1 thì logax > b ⇔ x > ab

- nếu như 0ax > b ⇔ 0 b

II. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LOGARIT

1. Giải phương trình logarit, bất PT logarit bằng phương pháp đưa về thuộc cơ số

logaf(x) = logag(x) ⇔ f(x) = g(x)

logaf(x) = b ⇔ f(x) = ab

+ lưu giữ ý: Đối với những PT, BPT logarit ta nên đặt đk để các biểu thức logaf(x) có nghĩa, có nghĩa là f(x) ≥ 0.

2. Giải phương trình, bất PT Logarit bằng phương pháp đặt ẩn phụ

+ Với các phương trình, bất PT logarit mà có thể biểu diễn theo biểu thức logaf(x) thì ta rất có thể sử dụng phép để ẩn phụ t = logaf(x).

+ Ngoài việc đặt đk để biểu thức logaf(x) tức là f(x) > 0, chúng ta cần phải để ý đến đặc điểm của PT, BPT logarit sẽ xét (có đựng căn, gồm ẩn ở mẫu mã hay không) lúc ấy ta phải để điều kiện cho những PT, BPT này có nghĩa.

Xem thêm: Top 15 Đề Thi Học Kì 2 Lớp 7 Môn Tiếng Anh Năm 2020, Đề Thi Học Kì 2 Lớp 7 Môn Anh 2021

3. Giải phương trình, bất PT logarit bằng cách thức mũ hoá

+ Đôi lúc ta chẳng thể giải một phương trình, bất PT logarit bằng cách đưa về cùng một cơ số hay sử dụng ấn phụ được, lúc ấy ta thể đặt x = at PT, BPT cơ bản (phương pháp này hotline là nón hóa)

+ dấu hiệu nhận biết: PT loại này thường chứa nhiều cơ số khác nhau

II. BÀI TẬP VỀ PHƯƠNG TRÌNH LOGARIT VÀ BẤT PT LOGARIT

* Giải PT, BPT Logarit áp dụng cách thức cùng cơ số

Bài tập 1: Giải các phương trình sau

a) log3(2x+1) = log35

b) log2(x+3) = log2(2x2-x-1)

c) log5(x-1) = 2

d) log2(x-5) + log2(x+2) = 3

* Lời giải:

a) ĐK: 2x+1 > 0 ⇔ x>(-1/2)

PT ⇔ 2x+1 = 5 ⇔ 2x = 4 ⇔ x = 2 (thoả ĐK)

b) ĐK: x+3>0, 2x2 - x - 1 > 0 ta được: x>1 hoặc (-3)2(x+3) = log2(2x2-x-1) ⇔ x+3 = 2x2 - x - 1 ⇔ 2x2 - 2x - 4 = 0

⇔ x2 - x - 2 = 0 ⇔ x = -1 (thoả) hoặc x = 2 (thoả)

c) ĐK: x - 1 > 0 ⇔ x > 1

Ta có: log5(x-1) = 2 ⇔ x-1 = 52 ⇔ x = 26 (thoả)

d) ĐK: x-5 > 0 cùng x + 2 > 0 ta được: x > 5

Ta có: log2(x-5) + log2(x+2) = 3 ⇔ log2(x-5)(x+2) = 3 ⇔ (x-5)(x+2) = 23

⇔ x2 - 3x -18 = 0 ⇔ x = -3 (loại) hoặc x = 6 (thoả)

* Giải phương trình Logarit bằng cách thức đặt ẩn phụ

Bài tập 2: Giải các phương trình sau

a) 

*

b) 

*

c) 

*

d) 

*

e) 1 + log2(x-1) = log(x-1)4

* Lời giải:

a) ĐK: x>0

Ta đặt t=log3x lúc đó PT ⇔ t2 + 2t - 3 = 0 ⇔ t =1 hoặc t = -3

Với t = 1 ⇔ log3x = 1 ⇔ x = 3

Với t = -3 ⇔ log3x = -3 ⇔ x = 3-3 = 1/27

b) 4log9x + logx3 - 3 = 0 ĐK: 03x + 1/log3x -3 = 0

Ta để t = log3x khi đó PT ⇔ 2t + 1/t - 3 = 0 ⇔ 2t2 - 3t + 1 = 0 ⇔ t=1 hoặc t = 1/2

Với t = 1 ⇔ log3x = 1 ⇔ x = 3 (thoả)

Với t = 50% ⇔ log3x = 1/2 ⇔ x = √3 (thoả)

c) ĐK: log3x tất cả nghĩa ⇔ x > 0

 Các chủng loại của phân thức đề nghị khác 0: (5+log3x)≠0 với (1 +log3x)≠0 ⇔ log3x ≠ -5 và log3x ≠ -1

 Ta đặt t = log3x (t ≠ -1, t ≠ -5) khi đó:

 

*
 

⇔ (1+t) +2(5+t)=(1+t)(5+t) ⇔ 3t + 11 = t2 + 6t + 5 ⇔ t2 + 3t - 6 = 0

⇔ 

*
 (thoả ĐK)

 thay t=log3x ta được kết quả: x =3t1 và x =3t2

d) 

*
 ĐK: x>0

 PT⇔ 

*

Đặt t=log2x Ta được PT: t2 + t - 2 = 0 ⇔ t = 1 hoặc t = -2

Với t = 1 ⇔ x = 2 

Với t = -2 ⇔ x = 1/4

e) 1 + log2(x-1) = log(x-1)4

 ĐK: 02(x-1) ta gồm PT: 1+t = 2/t ⇔ t2 + t - 2 = 0 ⇔ t = 1 hoặc t = -2

Với t = 1 ⇔ x-1 = 2 ⇔ x = 3

Với t = -2 ⇔ x-1 = 1/4 ⇔ x= 5/4.

* Giải phương trình Logarit áp dụng phương thức mũ hoá

Bài tập 3: Giải các phương trình sau:

a) ln(x+3) = -1 + √3

b) log2(5 – 2x) = 2 – x 

* Lời giải:

a) ĐK: x-3>0 ⇔ x>3 với điều kiện này ta mũ hóa 2 vế của PT đã đến ta được PT:

*

*
 (thoả)

b) log2(5 – 2x) = 2 – x 

 ĐK: 5 - 2x > 0 ⇔ 2x x (t>0,tx2 - 5t + 4 = 0

 ⇔ t = 1 (thoả) hoặc t =4 (thoả)

 Với t = 1 ⇔ x = 0

 Với t = 4 ⇔ x = 2

Bài tập 4: Giải những bất phương trình sau

a) log0,5(x+1) ≤ log2(2-x)

b) log2x - 13logx + 36 > 0

Lời giải:

a) ĐK: x+1>0 cùng 2-x>0 ⇔ -10,5(x+1) ≤ log2(2-x) ⇔ -log2(x+1)≤ log2(2-x) ⇔ log2(2-x) + log2(x+1) ≥ 0