Tài liệu do TS Nguyễn Hoàng Việt chủ biên, gồm 138 trang, tổng hợp các bài tập tự học về kiến ​​thức cần biết, các dạng toán thường gặp, nguyên hàm, tích phân và các chuyên đề ứng dụng, giúp các em học trò làm tài liệu tham khảo lúc học tập. Chương trình Gicửa ải tích 12 Chương 3.

Bạn đang xem: Chuyên đề nguyên hàm

*

mục lục: Chương 3.. Nguyên tắc, phân tích và ứng dụng 1. §1 – Tính nguyên hàm – Sử dụng khái niệm, Bảng điều kiện 1.

Kiến thức cần nhớ 1. B tần số toán dạng 2. + Dạng 1. Vận dụng bảng biểu thức nguyên hàm 2. + Dạng 2. Chia hàm tích thành tổng 7. + Dạng 3. Chia hàm phân số thành tổng 9. C Bài tập 14. §2 – Máy tính chính – Sử dụng các phương pháp không giống nhau 17.

Dạng toán tần số 17. + Dạng 1. Biến đổi sự chuyển đổi của hàm lũy thừa 17. + Dạng 2. Biến thể hàm phân số 19. + Dạng 3. Phép dời hình chuyển đổi của hàm số vô tỉ 20. + Mẫu 4. Phép chuyển đổi lượng giác 22. + Mẫu 5. Phép chuyển đổi chuyển đổi hàm số mũ, hàm số lôgarit 24. Bài tập 27. §3 – Các phép tính nguyên thủy – Sử dụng phương pháp luận chính Phần 30.

Dạng toán tần số 30. + Dạng 1. Một phần nguyên thủy của “u = polynomial” 30. + Dạng 2. Một phần nguyên thủy 31 của “u = logarit”. + Dạng 3. Nguyên thủy 33 liên kết các biến và các bộ phận. + Mẫu 4. Nguyên sinh một phần 35 ở dạng “lặp lại”. + Mẫu 5. Một phần nguyên thủy 36 ở dạng “hàm ẩn”. Bài tập 38. §4 – Đặc điểm phân tích – Sử dụng khái niệm, đặc điểm 41.

Dạng toán tần số 41. + Dạng 1. Tính tích phân 41 bằng cách sử dụng khái niệm. + Dạng 2. Chia hàm tích thành tổng các hàm cơ bản 45. + Dạng 3. Chia hàm phân số thành tổng của các hàm cơ bản 47. Bài tập 51. §5 – Tính toán giải tích – Sử dụng các phương pháp biến số 54.

Dạng toán tần số 54. + Loại 1. Sửa một biến kiểu t = u (x) 54. + Dạng 2. Lượng giác 59. Bài tập 61. §6 – Phép tính giải tích – Tiết 65 sử dụng phương pháp phân tích cụ thể.

Dạng toán tần số 65. + Dạng 1. Tích hợp theo từng phần bằng cách sử dụng “u = polynomial” 65. + Dạng 2. Tích hợp theo từng phần sử dụng “u = logarit” 67. Bài tập 70. §7 – Phân tích trình diễn 74.

Dạng toán tần số 74. + Dạng 1. Sử dụng các tính chất tính vi phân độc lập với biến 74. + Dạng 2. Tìm hàm số f (x) bằng cách nghịch biến 76. + Dạng 3. Tìm nguyên hàm f (x) bằng phương pháp “đạo hàm đúng” 77. + Mẫu 4. Cách tích hợp các bộ phận 79. + Mẫu 5. Phương pháp ghép bình phương 81. Bài tập 84. §8 – Ứng dụng giải tích – Tính diện tích phòng 89.

Thường là một dạng toán học 89. + Dạng 1. Mặt phẳng hình 89 xung quanh bởi hai đồ thị y = f (x) và y = g (x). + Dạng 2. Hình phẳng được xung quanh bởi ba hoặc nhiều đồ thị của hàm số 97. + Dạng 3. Điều chỉnh một số “mẫu hình” của hình dạng phẳng thực tiễn 99. Bài tập 103. §9 – Vận dụng phép phân tích – Tính thể tích của vật thể, ranh giới thể tích 107.

Dạng toán tần số 107. + Dạng 1. Tính thể tích của một vật nếu biết tiết diện vuông góc với Ox107. + Dạng 2. Tính thể tích khối tròn xoay lúc cho mặt phẳng xoay quanh trục Ox 108. + Dạng 3. Điều chỉnh một số vấn đề thực tiễn 113. Bài tập 117. §10 – Ứng dụng của phép phân tích – Một số vấn đề về chuyển động 120.

Dạng toán tần số 120. + Dạng 1. Cho hàm véc tơ vận tốc tức thời, tìm quãng đường vật đi được 120. + Dạng 2. Cho đồ thị của hàm véc tơ vận tốc tức thời, tìm quãng đường nhưng vật 121 đã đi được. + Dạng 3. Cho một hàm gia tốc, tìm quãng đường vật đi được 122. Bài tập 124. Tổng quan về §11–126.

Số chuyên đề 1126. B Chủ đề 2129.

Tải xuống tài liệu ..


Chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp tri thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học trò lớp 12 tham khảo lúc học chương trình Gicửa ải tích 12 chương 3.

Xem thêm: Tình Yêu Nữ Thiên Bình Cự Giải Và Thiên Bình Có Hợp Nhau Không

MỤC LỤC: Chương 3. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Vận dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm liên kết đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng khái niệm, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân ko phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mẫu hình” hình phẳng thực tiễn 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể lúc biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay lúc cho hình phẳng xoay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tiễn 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm véc tơ vận tốc tức thời, tìm quãng đường vận chuyển của vật 120. + Dạng 2. Cho đồ thị hàm véc tơ vận tốc tức thời, tìm quãng đường vận chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường vận chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

(adsbygoogle = window.adsbygoogle || <>).push({}); Tải tài liệu

#Chuyên #đề #nguyên #hàm #tích #phân #và #ứng #dụng #Nguyễn #Hoàng #Việt